
Cooling down Lévy flights

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 12299

(http://iopscience.iop.org/1751-8121/40/41/003)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/41
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 12299–12313 doi:10.1088/1751-8113/40/41/003

Cooling down Lévy flights
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Abstract
Let L(t) be a Lévy flights process with a stability index α ∈ (0, 2),
and U be an external multi-well potential. A jump diffusion Z satisfying
a stochastic differential equation dZ(t) = −U ′(Z(t−)) dt + σ(t) dL(t)

describes an evolution of a Lévy particle of an ‘instant scale’ σ(t) in an
external force field. The scale is supposed to decrease polynomially fast,
i.e. σ(t) ≈ t−θ for some θ > 0. We discover two different decrease regimes.
If θ < 1/α (slow cooling), the jump diffusion Z(t) has a non-trivial limiting
distribution as t → ∞, which is concentrated at the potential’s local minima.
If θ > 1/α (fast cooling), the Lévy particle gets trapped in one of the potential
wells.

PACS numbers: 05.40.Fb, 02.50.Ey, 02.50.Fz, 02.50.Ga

1. Introduction

In this paper, we study a Lévy flights dynamics in an external multi-well potential in the
annealed regime. We are motivated by the problem of random search of the global minimum
of an unknown function U with the help of simulated annealing. For simplicity, we consider a
one-dimensional case. Let U be a multi-well potential satisfying some regularity conditions.
Classical continuous time simulated annealing consists in an examination of a time non-
homogeneous Smoluchowski diffusion process Ẑ = (Ẑ(t))t�0, satisfying the stochastic
differential equation

dẐ(t) = −U ′(Ẑ(t)) dt + σ̂ (t) dW(t) (1)

with some positive decreasing temperature function σ̂ (t), σ̂ (t) → 0 as t → +∞. For small
values of σ̂ (t), the process Ẑ spends most of the time in small neighbourhoods of the potential’s
local minima and makes occasional transitions between the adjacent wells. It is possible to
choose an appropriate cooling schedule σ̂ (t), such that the diffusion settles down near the
global maximum of U. Indeed, one should take σ̂ 2(t) ≈ θ

ln(λ+t)
, the parameter θ > 0 being
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a cooling rate and λ > 1 parameterizing the initial temperature. Then there is a critical
value θ̂ > 0, such that the marginals Ẑ(t) converge in probability to the global minimum
of U if θ > θ̂ , and the convergence fails if 0 < θ < θ̂ . Moreover, the critical value θ̂

is a logarithmic growth rate of the principal non-zero eigenvalue λ1(σ ) of the infinitesimal
generator Aσf = σ 2

2 �f −U ′f ′ of the time-homogeneous diffusion X̂ = (X̂(t))t�0 satisfying
the stochastic differential equation

dX̂(t) = −U ′(X̂(t)) dt + σ dW(t), (2)

i.e. θ̂ = − limσ→0 σ 2 ln |λ1(σ )|. Heuristic justification for the convergence is as follows. The
principal non-zero eigenvalue λ1(σ ) determines the convergence rate of X̂ to its invariant
measure µσ (dx) = cσ exp(−2U(x)/σ 2) dx, cσ being a normalizing factor. Thus, for any
continuous positive function f we have an estimate

|Exf (X̂(t)) −
∫

f (x)µσ (dx)| � C e−|λ1(σ )|t . (3)

The weak limit of the invariant measures µσ (dy) as σ → 0 is a Dirac mass at the potential’s
global minimum. For small values of σ̂ (t), the dynamics of Ẑ reminds of a dynamics of X̂.
Thus, Ẑ(t) has enough time to settle down in the deepest potential well if σ̂ (t) is such that

t |λ1(σ̂ (t))| → ∞ ⇔ t

(λ + t)θ̂/θ
→ ∞ ⇔ θ > θ̂, t → +∞. (4)

It was Kirkpatrick et al [1] and Černy [2] who generalized the seminal paper [3] by
Metropolis et al, bridged the statistical mechanics with combinatorial optimization problems
and gave rise to the extensive physical and mathematical study of simulated annealing. We
mention here the work by Geman and Geman [4], who firstly obtained the logarithmic decrease
rate of σ̂ (t). Vanderbilt and Louie [5] applied simulated annealing to optimization problems
over continuous variables, and Aluffi-Pentini et al [6], Geman and Hwang [7] and Gidas [8]
considered simulated annealing of Gaussian diffusions, i.e. studied the process Ẑ from (1).

Further mathematical results on Gaussian continuous time simulated annealing can be
found in works by Chiang et al [9], Hajek [10], Holley and Stroock [11], Holley et al [12],
and Hwang and Sheu [13, 14]. We also refer the reader to the review paper [15] by Gidas, to
Chapter 11 of [16] by Hartmann and Rieger and further references therein.

Our present research is motivated by the paper [17] by Szu and Hartley, where they
introduced the so-called fast simulated annealing which allows us to perform a non-local
search of the deepest well. The fast simulated annealing process in the sense of [17] is a
discrete time Markov chain, where the states are obtained from the Euler approximation of (1)
driven not by Gaussian noise but by Cauchy noise. The new state is accepted according to the
Metropolis algorithm with acceptance probability which equals 1, if the potential value in this
state is smaller, i.e. the new position is ‘lower’ in the potential landscape. If the new position
is ‘higher’, it is accepted with the probability ∼ exp(−�U/σ), where �U is the difference of
the potential values in the new and the old states and σ is a decreasing noise amplitude. The
advantage of this method consists in faster transitions between the potential wells due to the
heavy tails of Cauchy distribution. Moreover, the authors claim that the optimal cooling rate
is algebraic, σ(t) ≈ t−1, which also accelerates convergence.

In the present paper, we consider a continuous-time Lévy flights counterpart of the
diffusion (1). Our goal is to study the asymptotic properties of the system in dependence of a
cooling schedule. We notify the reader that in regimes where a Lévy flights process converges
to some limiting distribution, it does not locate the global minimum of U, but reveals the
spatial structure of the potential. However, the results presented in this paper allow us to
design a class of non-local search algorithms which successfully locate the global minimum
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of the potential. We address the reader to our recent paper [18] on a theoretical and numerical
description of these algorithms.

The present paper contains a heuristic derivation of results, which are proved rigorously
in [19]. It can be seen as a sequel of [20–22] where a small-noise dynamics of Lévy flights in
external potentials was studied. We emphasize that our methods are purely probabilistic.

2. Object of study and results

2.1. Lévy flights

Throughout this paper we understand a Lévy flights (LF) process L = (L(t))t�0 of stability
index α ∈ (0, 2) as a Lévy process (i.e. a stochastically continuous process with independent
stationary increments and sample paths being right continuous and having left limits) whose
marginals have the Fourier transform

E eiωL(t) = e−c(α)t |ω|α , c(α) = 2
∫ ∞

0

1 − cos y

y1+α
dy = 2

∣∣∣∣ cos

(
πα

2

)
�(−α)

∣∣∣∣. (5)

There exists a broad physical and mathematical literature on Lévy flights. We refer the reader
to monographs by Sato [23] and Uchaikin and Zolotarev [24] and a topical review [25] by
Metzler and Klafter.

We emphasize that our definition of Lévy flights slightly differs from that used by
other authors. For example, Eliazar and Klafter [26, 27], Chechkin et al [28–31], Sokolov
[32], Brockmann and Sokolov [33] and Ditlevsen [34] consider the Lévy flights process
L′(t) = c(α)−1/αL(t) with the Fourier transform E eiωL′(t) = e−t |ω|α . This difference is not
essential for the analysis as long as the stability index α ∈ (0, 2) is fixed. However, one should
be careful when deriving theoretical and numerical results for α varying over the interval
(0, 2), especially for α from small neighbourhoods of 0 and 2. We shall comment on this
subject in section 2.3.

In our analysis we shall use the Lévy–Khinchin representation of the characteristic
function of L(t), namely

E eiωL(t) = exp

{
t

∫
R\{0}

[eiωy − 1 − iωyI{|y| � 1}] dy

|y|1+α

}
, (6)

where I{A} denotes the indicator function of a set A. The most important ingredient of the
representation (6) is the so-called Lévy (jump) measure of the random process L, given by

ν(A) =
∫

A\{0}

dy

|y|1+α
, A is a Borel set in R. (7)

It is easy to see that the Lévy measure ν ′ of the Lévy flights process L′ has the density
ν ′(dy) = c(α)1/α|y|−1−α

I(y �= 0) dy.
The measure ν controls the intensity and sizes of the jumps of the Lévy flights process.

Let �L(t) = L(t) − L(t−) be the random jump size of L at a time instance t (here we use the
existence of the left limit L(t−)), t > 0, and the number of jumps belonging to the set A on
the time interval (0, t] be denoted by N(t, A), i.e.

N(t, A) = 
{s : (s,�L(s)) ∈ (0, t] × A}. (8)

Then the random variable N(t, A) has a Poisson distribution with mean tν(A) (which can
possibly be infinite or zero), see e.g. Sato [23, chapter 4]. It is helpful to note that for any
stability index α ∈ (0, 2), the Lévy measure of any neighbourhood of 0 is infinite; hence LFs
make infinitely (countably) many very small jumps on any time interval. The tails of the density
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ν(dy) = |y|−1−α
I(y �= 0) dy determine big jumps of LFs. Thus, E|L(t)|δ < ∞, t > 0, iff∫

|y|�1 |y|δν(dy) < ∞ iff δ < α.

2.2. External potential

We assume that the external potential U is smooth and has n local minima mi and n − 1 local
maxima si enumerated in the increasing order, i.e.

−∞ = s0 < m1 < s1 < · · · < sn−1 < mn < sn = +∞. (9)

We also assume that local extrema are non-degenerate, i.e. U ′′(mi) > 0 and U ′′(si) < 0, and
the potential increases fast at infinity, i.e. |U ′(x)| > |x|1+c, |x| → ∞ for some c > 0.

Under the assumptions on U, the deterministic dynamical system

X0
x(t) = x −

∫ t

0
U ′(X0

x(u)
)

du (10)

has n domains of attraction �i = (si−1, si) with asymptotically stable attractors mi . We
note that if x ∈ �i then X0

x(t) ∈ �i for all t � 0, i.e. the deterministic trajectory cannot
pass between different domains of attraction. Denote Bi = {x : |mi − x| � �} as a �-
neighbourhood of the attractor mi . We suppose that � is small enough, so that Bi ⊂ �i,

1 � i � n. Due to the rapid increase of U ′ at infinity, the return of X0
x(t) from ±∞ to B1 or

Bn occurs in finite time.

2.3. Small constant noise amplitude

First, we consider the dynamics of the LFs εL in the external potential U in the limit of a
small time-independent scale ε → 0. This dynamics is described by the stochastic differential
equation

Xε
x(t) = x −

∫ t

0
U ′(Xε

x(u−)
)

du + εL(t), x ∈ R, t � 0. (11)

In the case of arbitrary fixed noise amplitude, equation (11) was studied analytically and
numerically by Jespersen et al [35], Chechkin et al [28, 29], and Eliazar and Klafter [26, 27].
Small noise asymptotics ε → 0 of Xε, in particular the barrier crossing problem and the
asymptotics of Kramers’ times, were studied by Chechkin et al in [30, 31].

In our previous papers [20–22], we developed a new purely probabilistic approach to the
LF dynamics in the limit of small ε. In particular, we obtained a law and the mean value
of the first exit time of a LF process from a potential well (Kramers’ time) and studied the
meta-stable behaviour of Xε in a multi-well potential. Below we formulate the results.

For any � > 0 sufficiently small, in the limit ε → 0, the process Xε spends an
overwhelming proportion of time in the set ∪n

i=1Bi making occasional abrupt jumps between
different neighbourhoods Bi . Thus, the knowledge of the transition times and probabilities
is essential for understanding the asymptotic properties of Xε. Let T i

x (ε) = inf
{
t � 0 :

Xε
x(t) ∈ ∪j �=iBj

}
. For x ∈ Bi , the stopping time T i

x (ε) denotes the first transition time to a
�-neighbourhood of a minimum of a different well. Then we proved the following result.

Theorem 2.1 (Transitions, [22]). For x ∈ Bi, 1 � i � n, the following estimates hold in the
limit ε → 0:

Px(X
ε(T i(ε)) ∈ Bj) → qij q

−1
i , i �= j, (12)

P(x)(ε
αT i(ε) � U) → e−qiU , U � 0, (13)
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εαExT
i(ε) → q−1

i , (14)

where

qij = α−1||sj−1 − mi |−α − |sj − mi |−α|, i �= j, (15)

qi =
∑
j �=i

qij = α−1(|si−1 − mi |−α + |si − mi |−α). (16)

As we see, the transition times between the wells of Xε are asymptotically exponentially
distributed in the limit of small noise, and hence unpredictable, due to the memoryless property
of the exponential law. The transition probabilities between the wells are noise independent
and strictly positive. Thus, Xε reminds of a Markov process on a finite state space. Indeed,
the following theorem holds.

Theorem 2.2 (Metastability, [22]). If x ∈ �i, 1 � i � n, then for t > 0

Xε
x(tε

−α) → Ymi
(t), ε → 0, (17)

in the sense of finite-dimensional distributions, where Y = (Yy(t))t�0 is a continuous
time Markov chain on a state space {m1, . . . , mn} with the infinitesimal generator Q =
(qij )

n
i,j=1, qij being defined in (15) and (16), qii = −qi .

Since none of the entries qij vanishes, the limiting Markov process Y has a unique invariant
distribution π = (π1, . . . , πn)

T , which can be calculated from the matrix equation QT π = 0.
For example, in the case of a double-well potential, n = 2, with local minima at

m1 < 0 < m2 and a saddle point s1 at the origin, the generator matrix Q from theorem 2.2
takes the form

Q = 1

α

(
−|m1|−α |m1|−α

m−α
2 −m−α

2

)
. (18)

Solving the Fokker–Planck equation QT π = 0 for the invariant measure π = (π1, π2)
T with

the normalizing condition π1, π2 � 0, π1 + π2 = 1 one finds the limiting distribution of Xε(t)

as t → +∞ and ε → 0:

π1 = |m1|α
|m1|α + mα

2

, π2 = mα
2

|m1|α + mα
2

. (19)

Now we comment on the parameterization of LFs (5) and (6). As it is seen from the proof of
theorems 2.1 and 2.2, only the weight of the tails of the jump measure ν is important for the
barrier crossing. In other words, the Lévy particle does not climb up the potential barrier but
penetrates it at one big jump. Consider the tails of the jump measures ν and ν ′, namely

Tα(x) =
∫

|x|�y

dy

|y|1+α
= 1

αxα
, (20)

T ′
α(x) = c(α)1/α

∫
|x|�y

dy

|y|1+α
= c(α)1/α

αxα
, x > 0. (21)

The tail function Tα(x) is well defined for all α > 0, whereas T ′
α can be considered only for

α ∈ (0, 2). The reason for this is the discontinuity of the prefactor c(α) as α ↑ 2. On the
other hand, c(α) describes small jumps of the LF process which play no important role for the
small noise asymptotics ε → 0. Thus, the parametrization of the process L′ mixes small and
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big jump features, whereas the parametrization of the process L allows us to take into account
only its heavy-tail dynamics.

A further discussion on different parametrizations can be found in appendix C of [31] by
Chechkin et al, where the authors showed that the results of theorem 2.1 are in good agreement
with numerical experiments.

In fact, theorems 2.1 and 2.2 formulated in this paper for LFs are proven in [22] in a
much more general setting which allows general Lévy noises with power tails and a Gaussian
component. An interesting class of such processes is constituted by the so-called weakly
tempered LFs H = (H(t))t�0, which are defined via their Fourier transform

E eiωH(t) = exp

{
t

∫
R\{0}

[eiωy − 1 − iωyI{|y| � 1}] dy

|y|1+α(1 + y2)β/2

}
. (22)

The jump measure of the process H has a density µ(dy) = |y|−1−α(1 + y2)−β/2
I(y �= 0) dy

with parameters α ∈ (0, 2) and β � 0. It is clear that if β = 0, the process H is just an
α-stable Lévy process.

Since the values of the jump measure in the vicinity of the origin control small jumps of
H, and since |y|−1−α(1+y2)−β/2 ≈ |y|−1−α as |y| → 0, we deduce that small jumps of H have
the same size and intensity as of a LF process with the stability index α. On the other hand,
since |y|−1−α(1 + y2)−β/2 ≈ |y|−1−α−β as |y| → ∞, the big, extremal jumps of H, which are
responsible for the exit from the potential well, have power tails of the order α + β. Thus,
E|H(t)|δ < ∞ iff δ < α + β, and H has finite variance if α + β > 2. Writing α + β instead
of α in theorems 2.1 and 2.2, we obtain Kramers’ times and metastability results for the jump
diffusions driven by the process H.

We emphasize that no explicit formula for the Fourier transform (22) is needed for the
proof: it is enough to know the tail behaviour of the process’s jump measure.

Finally, we note that theorems 2.1 and 2.2 also hold for asymmetric LFs with the jump
measure ν(dy) = c1|y|−1−α

I{y < 0} + c2y
−1−α

I{y > 0}, c1, c2 � 0, c1 + c2 > 0, and provide
a theoretic background for the numerical experiments by Dybiec et al [36].

2.4. Decreasing noise amplitude

In the annealed regime, the dynamics of Lévy flights is characterized by the time non-
homogeneous equation

Zλ
s,z(t) = z −

∫ t

s

U ′(Zλ
s,z(u−)

)
du +

∫ t

s

dL(u)

(λ + u)θ
, z ∈ R, 0 � s � t, (23)

where a positive parameter θ denotes the cooling rate and λ > 0 determines the initial scale,
which equals to (λ + s)−θ .

It is easily seen from (23) that the evolution of the process starting at time s � 0 is the
same as that of the process starting at time zero with a different initial scale, namely

(
Zλ

s,z(s + t)
)
t�0

d= (
Zλ+s

0,z (t)
)
t�0, (24)

and thus the particular values of s or λ do not influence the asymptotic properties of the
process in the limit t → ∞. However, since our theory will work for small scales, it is often
convenient to study the dynamics not for large values of s and t but for large values of λ.
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The goal of this paper is to study the limiting behaviour of Zλ
0,z(t) as t → ∞ in dependence

on the cooling rate θ , inverse initial scale λ and initial point z.
Similar to the classical Gaussian case discussed in the introduction, the candidate for the

limiting law of Zλ
0,z(t) is the invariant distribution π of the Markov chain Y from theorem 2.2.

Furthermore, we have to distinguish between two different cooling regimes.
As in the previous section, for 1 � i � n, consider the stopping times

τ i,λ
s,z = inf

{
u � s : Zλ

s,z(u) ∈ ∪j �=iBj

}
. (25)

If z ∈ Bi , then τ i,λ
s,z denotes the transition time from a �-neighbourhood of mi to a �-

neighbourhood of some other potential’s minimum. For all j �= i, we also consider the
corresponding transition probabilities Ps,z(Z

λ(τ i,λ) ∈ Bj). Then the following analogue of
theorem 2.1 holds.

Theorem 2.3 (Slow cooling, transitions). Let θ < 1/α. For z ∈ Bi, 1 � i � n, the following
estimates hold in the limit λ → +∞:

P0,z(Z
λ(τ i,λ) ∈ Bj) → qij q

−1
i , i �= j, (26)

λ−αθE0,zτ
i,λ → q−1

i , (27)

qi and qij being defined in (15) and (16) respectively.

Theorem 2.4 (Slow cooling, convergence). Let θ < 1/α. Then for any λ > 0, z ∈ R, the law
of Zλ

0,z(t) converges weakly to the measure π , i.e. for any continuous and bounded function
f , we have

E0,zf (Zλ(t)) →
n∑

j=1

f (mj )πj , t → ∞. (28)

As we see, the difference between the Gaussian and the Lévy dynamics is huge. In the
appropriate annealing regime, the Gaussian diffusion Ẑ converges with probability 1 to the
coordinate of the global minimum of U. In contrast, the limiting law of the Lévy flights jump
diffusion is the measure π , which has positive masses at all local minima of U. Moreover, it
is easy to see that the masses π1, . . . , πn depend not on the heights of the potential barriers of
U, but only on the distances between its local minima and maxima.

If the cooling rate θ is above the threshold 1/α, the solution Zλ gets trapped in one of the
wells and thus the convergence fails. Consider the first exit time from the ith well

σ i,λ
s,z = inf

{
t � 0 : Zλ

s,z /∈ �i

}
. (29)

Then the following trapping result holds.

Theorem 2.5 (Fast cooling, trapping). Let θ > 1/α. For z ∈ Bi, 1 � i � n,

P0,z(σ
i,λ < ∞) = O(λ1−αθ ), λ → ∞. (30)

Consequently, E0,zσ
i,λ = ∞.

In the subsequent section, we sketch the proof of theorems 2.3–2.5 and discuss the
results.
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3. Predominant behaviour of the annealed process

3.1. Big and small jumps of a Lévy flights process

Our study of the random process Zλ is based on the probabilistic analysis of its sample paths.
We use the decomposition of the process L into small- and big-jump parts similar to that used
in [20–22]. Thus, we refer the reader to these papers for details and sketch the idea briefly.

With the help of the Lévy–Khinchin formula (6), we decompose the process L into a sum
of two independent Lévy processes with relatively small and big jumps. For any cooling rate
θ > 0, we introduce two new jump measures by setting

νλ
ξ (A) = ν(A ∩ {x : |x| � λθ/2}), (31)

νλ
η (A) = ν(A ∩ {x : |x| > λθ/2}), (32)

and two Lévy processes ξλ and ηλ with the corresponding Fourier transforms:

E eiωξλ
t = exp

{
t

∫
R\{0}

[eiωy − 1 − iωyI{|y| � 1}]νλ
ξ (dy)

}
, (33)

E eiωηλ
t = exp

{
t

∫
R\{0}

[eiωy − 1 − iωyI{|y| � 1}]νλ
η (dy)

}
. (34)

It is clear that the processes ξλ and ηλ are independent, and L
d= ξλ + ηλ.

Since νλ
ξ (R) = ∞, the process ξλ makes infinitely many jumps on each time interval. Its

jumps are, however, bounded by the threshold λθ/2, i.e.
∣∣�ξλ

t

∣∣ � λθ/2. Thus, ξλ
t has a finite

variance and more generally moments of all orders.
In contrast, the Lévy measure of the process ηλ is finite, and its mass equals

βλ = νλ
η (R) =

∫ −λθ/2

−∞

dy

|y|1+α
+

∫ ∞

λθ/2

dy

y1+α
= 2

∫ ∞

λθ/2

dy

y1+α
= 2

α
λ−αθ/2. (35)

Hence, ηλ is a compound Poisson process with jumps of absolute value larger than λθ/2. Let
τλ
k and Wλ

k , k � 0, respectively, be the jump arrival times and jump sizes of ηλ under the
convention τλ

0 = Wλ
0 = 0. The inter-arrival times T λ

k = τλ
k − τλ

k−1, k � 1, are independent
and exponentially distributed with mean β−1

λ . The jump sizes Wλ
k are also independent random

variables with the probability distribution function given by

P
(
Wλ

k < u
) = νλ

η (−∞, u)

νλ
η (R)

= 1

βλ

∫ u

−∞
I{|y| > λθ/2}νλ

η (dy). (36)

Finally, we can represent the random perturbation in (23) as a sum of two processes, namely∫ t

0

dL(u)

(λ + u)θ
=

∫ t

0

dξλ
u

(λ + u)θ
+

∞∑
k=1

Wλ
k(

λ + τλ
k

)θ
I{t � τk}. (37)

3.2. Predominant behaviour

Consider now the process Zλ
0,z given by equation (23). On the inter-arrival intervals

[
τλ
k−1, τ

λ
k

)
,

k � 1, it is driven only by the process ϕλ
t = ∫ t

0 (λ + u)−θ dξλ
u , and at the time instants τλ

k it

makes jumps of the size Wλ
k

/(
λ + τ k

λ

)θ
. Recall that the jumps of ξλ are bounded by λθ/2;
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hence the jumps sizes of ϕλ tend to zero as λ → ∞ for all t � 0, i.e.∣∣�ϕλ
t

∣∣ � λθ/2

(λ + t)θ
� 1

λθ/2
. (38)

The variance of ϕλ
t tends to zero in the limit of large λ, and the random trajectory Zλ

0,z(t) can
be seen as a small random perturbation of the deterministic trajectory X0

z (t) of the underlying
dynamical system on the intervals

[
τλ
k−1, τ

λ
k

)
. Consider a well �i with a minimum mi . Let

initial points z be away from the unstable points si−1 and si , namely z ∈ (si−1 +λ−γ , si −λ−γ )

for some positive γ . Then the deterministic trajectory X0
z (t) reaches a λ−γ -neighbourhood of

mi in at most logarithmic timeO(ln λ). Since the periods between the big jumps are essentially
longer, i.e.

ET λ
k = E

(
τλ
k − τλ

k−1

) = α

2
λαθ/2  O(ln λ), λ → +∞, (39)

we can show that with probability close to 1 the random trajectory Zλ is located in a small
neighbourhood of mi before the big jump.

Thus, we can summarize the pathwise behaviour of Zλ
0,z for large values of λ as follows:

Zλ
0,z(0) = z ∈ (si−1 + λ−γ , si − λ−γ ),

Zλ
0,z

(
τ 1
λ−) ≈ mi,

Zλ
0,z

(
τ 1
λ

) ≈ mi +
Wλ

1(
λ + τλ

1

)θ
∈ (si−1 + λ−γ , si − λ−γ )

Zλ
0,z

(
τ 2
λ−) ≈ mi,

· · ·
Zλ

0,z

(
τ k
λ−) ≈ mi,

Zλ
0,z

(
τ k
λ

) ≈ mi +
Wλ

k(
λ + τλ

k

)θ
∈ (sj−1 + λ−γ , sj − λ−γ ), j �= i,

Zλ
0,z

(
τ k+1
λ −) ≈ mj,

· · · ,

(40)

whereas on the intervals
[
τλ
k−1, τ

λ
k

)
the process Zλ follows the deterministic trajectory X0.

Thus, since we know the initial location of the particle, as well as the jump sizes Wλ
k and jump

times τλ
k , we can catch the essential features of the random path Zλ.

Of course, we have to be careful when dealing with trajectories which occasionally enter
the λ−γ -neighbourhoods of the saddle points si , where the force field U ′ becomes insignificant.
In these neighbourhoods, the Lévy particle has no strong deterministic drift which brings it to
a certain well’s minimum. Thus, we cannot decide whether Zλ converges to mi or to mi+1.
However, in the limit λ → ∞, the probability that Zλ jumps from a neighbourhood of mi to
a λ−γ -neighbourhood of some sj is negligible. In our further exposition, we do not consider
the unstable dynamics in these λ−γ -neighbourhoods and assume that (40) holds for all z ∈ �i .
Interested readers can find rigorous arguments in [19].

4. Transitions between the wells in the slow cooling regime. Proof of theorem 2.3

4.1. Mean transition time

Let us obtain the mean value of the first exit time σ i,λ form the well �i in the limit
λ → ∞. Indeed, Zλ can roughly leave �i only at one of the time instants τλ

k when
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mi + Wλ
k

/(
λ + τλ

k

)θ
/∈ �i . We can therefore calculate the mean value of σ i,λ using the

total probability formula:

E0,zσ
i,λ ≈

∞∑
k=1

E
[
τλ
k I

{
σ i,λ = τλ

k

}]

≈
∞∑

k=1

E

[
τλ
k · I

{
mi +

Wλ
1(

λ + τλ
1

)θ
∈ �i, . . . , mi

+
Wλ

k−1(
λ + τλ

k−1

)θ
∈ �i,mi +

Wλ
k(

λ + τλ
k

)θ
/∈ �i

}]
. (41)

Since the arrival times τλ
1 , τ λ

2 , . . . , τ λ
k , are dependent, no straightforward calculation of the

expectations in the latter sum seems possible. However, we can estimate these expectations
from above and below. Our argument is based on the inequalities 0 < τλ

1 < τλ
2 < · · · < τλ

k ,
and the obvious inclusions{

mi +
Wλ

j

λθ
∈ �i

}
⊆

{
mi +

Wλ
j(

λ + τλ
j

)θ
∈ �i

}
⊆

{
mi +

Wλ
j(

λ + τλ
k

)θ
∈ �i

}
,

1 � j � k − 1, (42)

where the probability of these events can be calculated explicitly from (36), to yield the
formula

P
(

mi +
Wλ

1

(λ + t)θ
/∈ �i

)
= 1

βλ

(∫ −|mi−si−1|(λ+t)θ

−∞
+

∫ ∞

(si−mi)(λ+t)θ

)
dy

|y|1+α
= qi

βλ(λ + t)αθ
.

(43)

Let us obtain the estimate for E0,zσ
i,λ from above. Note that for each k � 1, the arrival

time τλ
k is a sum of k independent exponentially distributed random variables T λ

j and thus
has a Gamma(k, βλ) distribution with a probability density βλ e−βλt (βλt)

k−1/(k − 1)!, t � 0.
Then, applying the second inclusion in (42) we obtain

E

[
τλ
k · I

{
mi +

Wλ
1(

λ + τλ
1

)θ
∈ �i, . . . , mi +

Wλ
k−1(

λ + τλ
k−1

)θ
∈ �i,mi +

Wλ
k(

λ + τλ
k

)θ
/∈ �i

}]

� E

[
τλ
k · I

{
mi +

Wλ
1(

λ + τλ
k

)θ
∈ �i, . . . , mi +

Wλ
k−1(

λ + τλ
k

)θ
∈ �i,mi +

Wλ
k(

λ + τλ
k

)θ
/∈ �i

}]

=
∫ ∞

0
βλt e−βλt

(βλt)
k−1

(k − 1)!
P

(
mi +

Wλ
1

(λ + t)θ
∈ �i

)k−1

P
(

mi +
Wλ

1

(λ + t)θ
/∈ �i

)
dt

=
∫ ∞

0
βλt e−βλt

(βλt)
k−1

(k − 1)!

[
1 − qi

βλ(λ + t)αθ

]k−1
qi

βλ(λ + t)αθ
dt. (44)

Summation over k yields

E0,zσ
i,λ �

∫ ∞

0
βλt e−βλt

qi

βλ(λ + t)αθ

∞∑
k=1

(βλt)
k−1

(k − 1)!

[
1 − qi

βλ(λ + t)αθ

]k−1

dt

=
∫ ∞

0

qit

(λ + t)αθ
exp

(
− qit

(λ + t)αθ

)
dt, (45)

where ‘�’ emphasizes that the inequality holds in the limit λ → +∞. Since αθ < 1, the latter
integral converges for all λ > 0, and it is possible to estimate its asymptotic value. Introducing
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a new variable u = λ+t
λ

, we transform the integral to the so-called Laplace-type integral with
a big parameter, which can be evaluated asymptotically (see [37, chapter 3]), i.e.

E0,zσ
i,λ � λ2−αθ

∫ ∞

1

qi(u − 1)

uαθ
exp

(
−qi(u − 1)λ1−αθ

uαθ

)
du

≈ λ2−αθ

∫ ∞

1
qi(u − 1) exp(−qi(u − 1)λ1−αθ ) du = q−1

i λαθ . (46)

Applying analogously the first inclusion from (42) to the first k − 1 jumps, we obtain the
estimate from below:

E0,zσ
i,λ �

∞∑
k=1

E

[
τλ
k · I

{
mi +

Wλ
1

λθ
∈ �i, . . . , mi +

Wλ
k−1

λθ
∈ �i,mi +

Wλ
k(

λ + τλ
k

)θ
/∈ �i

}]

�
∞∑

k=1

∫ ∞

0
tβλ e−βλt

(βλt)
k−1

(k − 1)!

[
1 − qi

βλλαθ

]k−1
qi

βλ(λ + t)αθ
dt

=
∫ ∞

0

qit

(λ + t)αθ
exp

(
− qit

λαθ

)
dt = λ2−αθ

∫ ∞

1

qi(u − 1)

uαθ
exp(−qi(u − 1)λ1−αθ )

≈ λ2−αθ

∫ ∞

1
qi(u − 1) exp(−qi(u − 1)λ1−αθ ) du = q−1

i λαθ . (47)

Fortunately, the estimates from below and above coincide, and thus give the asymptotic value
of the mean life time of the slowly cooled Lévy particle in a potential well.

To obtain the limit (27) for the mean transition time τ i,λ between the sets Bi and ∪j �=iBj ,
we note that at the exit time σ i,λ the process Zλ enters some of the wells �j, j �= i, with high
probability following the deterministic trajectory, and reaches a �-neighbourhood of a well’s
minimum in a time of the order O(ln λ), which is negligible in comparison with λαθ . Thus,
the limit (27) holds.

4.2. Transition probability

To calculate the transition probability between the wells, it suffices to obtain an estimate from
below. Similar to the estimate of the mean exit time, we have

P0,z(Z
λ(σ i,λ) ∈ �j) �

∞∑
k=1

P

(
mi +

Wλ
1

λθ
∈ �i, . . . , mi +

Wλ
k−1

λθ
∈ �i,mi +

Wλ
k(

λ + τλ
k

)θ
∈ �j

)

�
∞∑

k=1

∫ ∞

0
βλ e−βλt

(βλt)
k−1

(k − 1)!

[
1 − qi

βλλαθ

]k−1
qij

βλ(λ + t)αθ
dt

=
∫ ∞

0

qij

(λ + t)αθ
exp

(
− qit

λαθ

)
dt = λ1−αθ

∫ ∞

1

qij

uαθ
exp(−qi(u − 1)λ1−αθ )

≈ λ1−αθ

∫ ∞

1
qij exp(−qi(u − 1)λ1−αθ ) du = qij q

−1
i . (48)

With the help of the equality
∑

j �=i qij q
−1
i = 1, we conclude that P0,z(Z

λ(σ i,λ) ∈ �j) →
qij q

−1
i . Finally, since after entering �j , the process Zλ reaches Bj with high probability,

P0,z(Z
λ(σ i,λ) ∈ �j) ≈ P0,z(Z

λ(τ i,λ) ∈ Bj), and (26) holds.
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Figure 1. A slow cooling of a Lévy particle in a potential with local minima at −4, 0 and 3.

5. Convergence in the slow cooling regime. Proof of theorem 2.4

Figure 1 illustrates the typical behaviour of Z in the slow cooling regime, αθ < 1.
Roughly speaking, we can distinguish two different behaviours when the scale of the random
perturbation is big or small.

(1) In a general case, the initial scale λ−θ can be relatively big, so that the asymptotics
of theorem 2.3 do not hold. Thus, we have no theory for the transitions of Zλ between the
wells. At some time instance T which depends on the potential U and other parameters of the
system, the instant scale (λ + T )−θ becomes low enough so that theorem 2.3 starts working.
Moreover, choosing the time T sufficiently large, we make the transition probabilities of Z
between the neighbourhoods Bi close to qij /qi with any prescribed precision. For brevity, we
can also assume that Zλ

0,z(T ) ∈ Bi for some i.
(2) Denote τ(k), k � 0, successive transition times after T between different Bj , 1 � j �

n, with τ(0) = T by convention. The mean values E0,zτ (k) are finite and can be calculated
from theorem 2.3. Indeed, if τ(k − 1) = tk−1 and Zλ(τ(k − 1)) = zk−1 ∈ Bi , then the
conditional expectation of E0,zτ (k) equals

E0,z[τ(k)|τ(k − 1) = tk−1, Z
λ(τ (k − 1)) = zk−1] = tk−1 + Etk−1,zk−1τ

i,λ

= tk−1 + E0,zk−1τ
i,λ+tk−1 ≈ tk−1 + q−1

i (λ + tk−1)
αθ < ∞. (49)

From the time instance T on, Zλ makes transitions between the wells with probabilities close
to pij = qij /qi, i �= j , where pii = 0 by convention. These probabilities determine a discrete
time Markov chain V (k) on {m1, . . . , mn}, such that P(V (k) = mj |V (k − 1) = mi) = pij .
It is clear that V has the unique invariant distribution π . Moreover, V (k) converges to the
invariant distribution geometrically fast, i.e. there is 0 < ρ < 1 such that for all 1 � i, j � n

and k � 0, ∣∣Pmi
(V (k) = mj) − πj

∣∣ = O(ρk), k → ∞. (50)

With the help of the asymptotic relation,

P(Zλ(τ (k)) ∈ Bj |Zλ(τ(k − 1)) ∈ Bi) ≈ pij = P(V (k) = mj |V (k − 1) = mi). (51)

one can show that the distributions of Z(τ(k)) and V (k) are also close for k � 1, i.e.

P
(
Zλ

0,z(τ (k)) ∈ Bj

∣∣Zλ
0,z(T ) ∈ Bi

) ≈ Pmi
(V (k) = mj). (52)

Hence, with the help of (50) for any prescribed accuracy level we can find k0 � 1 such that
for k � k0 we have

P0,z(Z
λ(τ (k)) ∈ Bj) ≈ πj , (53)

independent of the initial point z.
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Figure 2. A fast cooling of a Lévy particle in a potential with local minima at −4, 0 and 3.

Finally, we note that after time T, the process Zλ spends most of the time in the
neighbourhoods Bi ,

Zλ
0,z(t) ≈ Zλ

0,z(τ (k)) for t ∈ [τ(k), τ (k + 1)), (54)

and thus if t � τ(k0) then P0,z(Z
λ(t) ∈ Bj) ≈ πj . This proves the statement of theorem 2.4.

As we see, if αθ < 1, the process Zλ reminds of a piece-wise constant jump process
on the state space {m1, . . . , mn}. It never stops jumping between the wells of U, and the
random sequence Zλ(τ(k)), k � k0, behaves like a stationary discrete time Markov chain with
a distribution π .

6. Trapping in the fast cooling regime. Proof of theorem 2.5

The regime of fast cooling θ > 1/α is simple. We estimate the probability of the exit from
a well. Since the exit occurs with high probability only at the arrival times of the big jump
process ηλ, we estimate

P0,z(σ
i,λ < ∞) ≈

∞∑
k=1

P0,z

(
σ i,λ = τλ

k

)

�
∞∑

k=1

P

(
mi +

Wλ
1(

λ + τλ
1

)θ
∈ �i, . . . , mi +

Wλ
k−1(

λ + τλ
k−1

)θ
∈ �i,mi +

Wλ
k(

λ + τλ
k

)θ
/∈ �i

)

�
∞∑

k=1

P

(
mi +

Wλ
k(

λ + τλ
k

)θ
/∈ �i

)
=

∫ ∞

0
βλ e−βλt

qi

βλ(λ + t)αθ

∞∑
k=1

(βλt)
k−1

(k − 1)!
dt

=
∫ ∞

0

qi

(λ + t)αθ
dt = qi

αθ − 1

1

λαθ−1
→ 0, λ → +∞. (55)

As a consequence, we have infinite mean exit times E0,zσ
i,λ = ∞. In other words, if θ > 1/α,

the dynamics of Zλ has two qualitatively different regimes as well. First, for big instant scales,
we have no theory for the transitions between the wells. Second, when the scale becomes
small enough, the Lévy particle gets trapped in one of the wells; see figure 2. In this case,
there is no convergence to the invariant measure π .

7. Conclusion and discussion

In this paper we studied the large time dynamics of a Lévy particle in a multi-well external
potential, with the instant scale decreasing with time as 1/tθ .

We discovered that if the cooling is slow, i.e. θ < 1/α, then the system reaches a quasi-
stationary regime where the transition probabilities between the wells converge to certain
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values which are explicitly determined in terms of the potential’s spatial geometry. Moreover,
the mean transition times between the wells are finite, and between the transitions the process
lives in a small neighbourhood of wells’ minima. As opposed to the Gaussian simulated
annealing, the Lévy flights process does not settle down near the global maximum of U.
However, our results can be applied for a search for the global minimum of the potentials,
which possess the so-called ‘large-rims-have-deep-wells’ property, see [38, 39], i.e. when the
spatially largest well is at the same time the deepest. Then, having empirical estimates of the
local minima locations mi and the invariant distribution π , we can derive the coordinates of
the saddle points si , and thus reconstruct the sizes of the wells.

Further, if the cooling is fast, i.e. θ > 1/α, the Lévy particle gets trapped in one of the
wells when the scale decreases below some critical level.

In this paper we do not answer the most interesting question: is it possible to detect a
global minimum of U with the help of a non-local search and Lévy flights? The answer to this
question is affirmative, and the algorithm and simulations are presented in our paper [18].
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Cooling down Lévy flights 12313

[29] Chechkin A V, Gonchar V Y, Klafter J, Metzler R and Tanatarov L V 2004 J. Stat. Phys. 115 1505–35
[30] Chechkin A V, Gonchar V Y, Klafter J and Metzler R 2005 Europhys. Lett. 72 348–54
[31] Chechkin A, Sliusarenko O, Metzler R and Klafter J 2007 Phys. Rev. E 75 041101
[32] Sokolov I M 2001 Phys. Rev. E 63 011104
[33] Brockmann D and Sokolov I M 2002 Chem. Phys. 284 409–21
[34] Ditlevsen P D 1999 Phys. Rev. E 60 172–9
[35] Jespersen S, Metzler R and Fogedby H C 1999 Phys. Rev. E 59 2736–45
[36] Dybiec B, Gudowska-Nowak E and Hänggi P 2007 Phys. Rev. E 75 021109
[37] Olver F W J 1974 Asymptotics and Special Functions (Computer Science and Applied Mathematics)

(New York: Academic)
[38] Schön J C 1997 J. Phys. A: Math. Gen. 30 2367–89
[39] Locatelli M 2002 Handbook of global optimization II Nonconvex Optimization and Its Applications vol 62

ed P M Pardalos and H E Romeijn (Dordrecht: Kluwer) pp 179–229

http://dx.doi.org/10.1023/B:JOSS.0000028067.63365.04
http://dx.doi.org/10.1209/epl/i2005-10265-1
http://dx.doi.org/10.1103/PhysRevE.75.041101
http://dx.doi.org/10.1103/PhysRevE.63.011104
http://dx.doi.org/10.1016/S0301-0104(02)00671-7
http://dx.doi.org/10.1103/PhysRevE.60.172
http://dx.doi.org/10.1103/PhysRevE.59.2736
http://dx.doi.org/10.1103/PhysRevE.75.021109
http://dx.doi.org/10.1088/0305-4470/30/7/018

	1. Introduction
	2. Object of study and results
	2.1. Lévy flights
	2.2. External potential
	2.3. Small constant noise amplitude
	2.4. Decreasing noise amplitude

	3. Predominant behaviour of the annealed process
	3.1. Big and small jumps of a Lévy flights process
	3.2. Predominant behaviour

	4. Transitions between the wells in the slow cooling regime. Proof of theorem 2.3
	4.1. Mean transition time
	4.2. Transition probability

	5. Convergence in the slow cooling regime. Proof of theorem 2.4
	6. Trapping in the fast cooling regime. Proof of theorem 2.5
	7. Conclusion and discussion
	Acknowledgments
	References

